Lie group and Lie algebra variational integrators for flexible beam and plate in R
نویسنده
چکیده
The purpose of this research project is to develop variational integrators synchronous or asynchronous, which can be used as tools to study complex structures composed of plates and beams subjected to large deformations and stress. We consider the geometrically exact models of beam and plate, whose configuration spaces are Lie groups. These models are suitable for modeling objects subjected to large deformations, where the stored energy chosen is adapted for the types of materials used in our field (isotropic or composite). The work of J. E. Marsden, and of his doctoral and post-doctoral students, were the basis for the development of variational integrators which are symplectic and perfectly preserve symmetries. Furthermore, discrete mechanical systems with symmetry can be reduced. In addition, by a ”good discretization”, the strain measures are unchanged by superposed rigid motion. The idea behind this work is to take advantage of the properties of these integrators to define the equilibrium position of structures, which are generally unknown, as well as to determine the constraints, while preserving the invariants of the structure. Along with solving this problem, we continue the approach of J.E. Marsden which consists to lay the foundations of discrete mechanics, with its theorems, its axioms, its definitions, which have the same value as the laws of continuous mechanics but for a discrete domain. That is, the discrete trajectories of a motion obtained by variational integrators satisfy these discrete laws.
منابع مشابه
Lie Group and Lie Algebra Variational Integrators for Flexible Beam and Plate in R3
The purpose of this thesis is to develop variational integrators synchronous or asynchronous, which can be used as tools to study complex structures composed of plates and beams subjected to large deformations and stress. We consider the geometrically exact models of beam and plate, whose configuration spaces are Lie groups. These models are suitable for modeling objects subjected to large defo...
متن کاملFiber bundles and Lie algebras of top spaces
In this paper, by using of Frobenius theorem a relation between Lie subalgebras of the Lie algebra of a top space T and Lie subgroups of T(as a Lie group) is determined. As a result we can consider these spaces by their Lie algebras. We show that a top space with the finite number of identity elements is a C^{∞} principal fiber bundle, by this method we can characterize top spaces.
متن کاملLie-Poisson integrators: A Hamiltonian, variational approach
In this paper we present a systematic and general method for developing variational integrators for LiePoisson Hamiltonian systems living in a finite-dimensional space g∗, the dual of Lie algebra associated with a Lie group G . These integrators are essentially different discretized versions of the Lie-Poisson variational principle, or a modified Lie-Poisson variational principle proposed in th...
متن کاملAn Overview of Lie Group Variational Integrators and Their Applications to Optimal Control
We introduce a general framework for the construction of variational integrators of arbitrarily high-order that incorporate Lie group techniques to automatically remain on a Lie group, while retaining the geometric structure-preserving properties characteristic of variational integrators, including symplecticity, momentum-preservation, and good long-time energy behavior. This is achieved by con...
متن کامل. N A ] 1 8 A ug 2 00 5 GENERALIZED GALERKIN VARIATIONAL INTEGRATORS
Abstract. We introduce generalized Galerkin variational integrators, which are a natural generalization of discrete variational mechanics, whereby the discrete action, as opposed to the discrete Lagrangian, is the fundamental object. This is achieved by approximating the action integral with appropriate choices of a finite-dimensional function space that approximate sections of the configuratio...
متن کامل